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Cognitive Radio (CR) is a new technology to answer the spectrum shortage 
problem by dynamically allowing secondary (unlicensed) users to utilize the 
spectrum holes, avoiding interference with primary (licensed) users. Smart 
Grid (SG) is an enhancement of the conventional system of electricity 
distribution and management. Two-way communication, smart devices, and 
sensors are the core competencies of SG which result in increasing the 
efficiency and reliability of the SG system. An enormous amount of data in the 
range of thousands of Terabytes is expected to be generated due to various 
SG applications in a fully functional smart grid communication network 
(SGCN), requiring a fair share of spectrum resources. CR based SGCN is 
widely proposed in the literature to carry a major chunk of this data to 
increase spectral efficiency. Dynamic spectrum allocation on the basis of 
fairness using CR technology is proposed in this work, which ensures the fair 
distribution of spectrum resources among cognitive SG users. This 
optimization problem is solved using heuristic approach. A comparative 
analysis of three algorithms: genetic algorithm (GA), particle swarm 
optimization (PSO) and cat swarm optimization (CSO) is presented for 
evaluating fairness and max sum reward (MSR). It is shown that CSO 
outperforms both GA and PSO in terms of average fairness and MSR achieved 
by secondary users for a number of allocations. 
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1. Introduction

*In the last few years, the demand for wireless
communication is increasing day by day and the 
available spectrum resources are becoming scarce. 
According to the FCC’s report, unreasonable 
command and control spectrum regulation is the 
main cause of underutilization of the wireless 
spectrum (FCC, 2002). The available electromagnetic 
spectrum cannot be increased and we are left with 
the only solution that we fully utilize the available 
spectrum resources. 

Static spectrum allocation is causing a huge waste 
of available spectrum with low consumption rate. 
Dynamic Spectrum Access (DSA) (Brown, 2005) can 
be the best option to overcome this wastage. 
Cognitive radio (CR), a promising technology to 
improve spectral efficiency is proposed in this work 
to solve the problems of spectrum shortage in SGCN. 

* Corresponding Author. 
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2313-626X/© 2017 The Authors. Published by IASE. 
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(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

The CR is basically an intelligent radio which senses 
and adapts the parameters (transmission and 
reception) of a wireless environment in which it 
operates (Akyildiz et al., 2006). Cognitive radio 
network (CRN) usually known as a setup, consisting 
of cognitive devices also known as unlicensed users 
(secondary users, SUs) which access the unused 
channels (spectrum holes) vacate by licensed users 
(primary users, PUs). A CR network architecture (Li 
et al., 2016) is given in Fig. 1. 

All of the technologies that are available to 
software defined radio (SDR) are employed by the 
CR along with the additional competencies of 
cognition and spectrum sensing (Mitola, 2000). The 
focus of our work is on spectrum sharing. 

Spectrum sharing has three modes of operation; 
overlay mode: PUs are present and there is 
collaboration among PUs and SUs, underlay mode: 
PUs are present and interference threshold is set for 
SUs and interweave mode: utilize the spectrum holes 
in the absence of PUs. This work emphasizes on 
spectrum sharing in Interweave mode where PUs are 
not considered. CR technology is aimed to avoid 
interference between PUs and SUs in considered 
scenario.  

http://www.science-gate.com/
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:salam@numl.edu.pk
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Fig. 1: A CR network architecture (Li et al., 2016) 

 

Smart Grid (SG) is an automatic energy delivering 
network which enables a two-way communication 
flow. It is capable of monitoring the entire system, 
intelligently manages the demand and supply of 
electricity and to respond to the possible changes 

that can occur (Alam et al., 2017). Conventional 
power grids are facing many challenges due to 
continually rising energy demands (Kim et al., 2014). 
The SG system is equipped with the two-way 
communication capabilities for control, monitoring, 
reliability, and security (Kuzlu et al., 2014). Three-
layered network architecture of SGCN is given in Fig. 
2. It describes the whole SG communication network 
as (a) home area network (HAN): user premises (b) 
neighborhood area network (NAN): distribution and 
transmission domain, and (c) wide area network 
(WAN): covering transmission domain to control 
centre, on the basis of coverage area and data rate 
required by SG devices.  It also depicts the feasible 
technologies and the nodes/devices that are used in 
CR operation. The detailed information about HAN, 
NAN, and WAN can be found in (Alam et al., 2017).   

 

 
Fig. 2: Cognitive Radio based Smart Grid network architecture (Alam et al., 2017) 

 
The SG applications generate an enormous 

amount of data that is needed to be transmitted to 
(or from) control centers such as meter readings, 
pricing, service, sensor measurement, multimedia 
monitoring data, surveillance data, prepayment data, 
allocation and automation data, firmware updates 
and program updates (Khan and Faheem, 2014). The 
number of users, data type, environmental 
conditions, and cost are the major factors that must 
be taken into account while selecting communication 
technology for SG communication. The approximate 
requirement for data and coverage area of each 
SGCN communication segment is presented in Fig. 3. 

 
Fig. 3: Approximate coverage and data rate requirements 

for HAN, NAN, and WAN (Alam et al., 2017) 
 

SGCN is an application area of CR technology, CR 
is proposed in SGCN to deal with the spectrum 
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allocation problem. Cognitive radio (CR) is the 
motivation to deal with such a huge amount of data 
and the problems of spectrum shortage; existing 
literature can be adapted according to the 
necessities of spectrum resources in SGN.  

Fairness is a crucial issue in SGCN to ensure the 
effectiveness of the system. Each user must be 
entertained according to its requirements under 
certain constraints in order to ensure fair 
distribution of the resources (Khan et al., 2016). In 
the communication layer of SGN, CR is employed on 
the basis of fairness by taking into account the 
overall fairness and user’s throughput must be 
maximized. Spectrum allocation is based on fairness 
by satisfying all the constraint conditions and it can 
be analyzed by using Jain’s fairness index (section 3, 
Eq. 1). 

Heuristic techniques are proposed in the work to 
solve this optimization problem and to achieve 
desirable results. The motivation for using heuristic 
technique is that it reduces the complexity of the 
system and reduces computational time, as the time 
is a critical issue in real time communication. The 
results show that proposed (heuristic) algorithms 
achieve the desired results with less computational 
time and improve the overall spectral efficiency.  

The salient features of our proposed 
methodology, for dynamically allocating the 
spectrum resources for CR based SGCN, are: 

 

 The considered scenario is based on spectrum 
sharing in Interweave mode and channel 
assignment is done in a way to avoid interference 
with PUs.  

 Our work presents an equality based channel 
allocation i.e. maintaining fairness among users.  

 Most of the work has been done by using graph 
theory but we proposed various heuristic 
approaches. Graph theory has high computational 
complexity whereas heuristic algorithms achieve 
the optimal results with low computational 
complexity. 

 The work mainly focuses on user premises data i.e. 
AMI metering, billing data etc. that has less time 
criticality requirement, thus CR is well suited. 

 

In CR, spectrum allocation has been one of the 
key interest areas for researchers. There are various 
methods of spectrum allocation that are proposed in 
the literature to improve the spectral efficiency 
under required constraints for spectrum allocation 
in CR. On the other hand, diverse data due to various 
SG applications to be carried over communication 
links in SGCN is in massive proportion. It 
necessitates a fair share of wireless spectrum in an 
efficient way, thus CR technology is very well suited 
for this scenario. Fairness is a critical concept in SG, 
maximizing the user’s throughput can cause 
unfairness in SGN. To solve this problem Byun et al. 
(2008) and Liu et al. (2008) considers the principle 
of maximizing the throughput fairness among users, 
by utilizing some utility functions, e.g. by maximizing 
the minimum average throughput per SU, using a 
fairness factor. 

Yang et al. (2016) proposed a cognitive smart 
grid communication networks (CSGCNs) model for 
Interweave mode, for the fair allocation of spectrum 
resources by using binary particle swarm 
optimization. Yu et al. (2010) proposed a new 
spectrum assignment algorithm for CRN in order to 
address fairness and throughput problems in 
underlay mode.  

Zhu and Zhou (2008) presented a new model in 
aiming to stimulate cognition process in a wireless 
network (in underlay model). Proportional fairness 
based spectrum allocation algorithm is proposed in 
(Ge et al., 2010) in which traditional labeling system 
based channel quantity factor is introduced. It gives 
better reward in terms of improving user’s fairness 
in underlay model. 

In Yang et al. (2009), authors considered the 
historical allocation information of secondary users 
and proposed a novel technique to solve the fairness 
problem by also considering the max sum reward. It 
improves the results in term of fairness and 
throughput among users. Fairness based resource 
allocation in cognitive radio based smart grid 
network (CRSGN) is presented to solve the 
aforementioned problems in Interweave mode. 

The rest of the paper is organized as Section II 
describes a review of existing work related to the 
problem. Section III contains the system and 
mathematical model of the problem. Heuristic 
algorithms: Genetic algorithm (GA), Particle swarm 
optimization (PSO) and Cat swarm optimization 
(CSO) are discussed in Section IV. Section V explains 
how heuristic algorithms are applied to the problem 
under consideration, followed by the simulation and 
results in section VI. The research article is finally 
concluded in the last section. 

2. System model and problem formulation 

The system model consists the typical scenario of 
the CR technology based SGCN, shown in Fig. 3 (Alam 
et al., 2017). The CR based IEEE 802.22 WRAN 
(TVWS) and IEEE 802.11af (super Wi-Fi) have been 
proposed in the literature for NAN and WAN 
communication. Our proposed solution is feasible for 
these both communication segments. It is assumed 
that the NAN and WAN spectrum managers have full 
knowledge about the spectrum holes. This problem 
is an actually fair allocation of already sensed 
spectrum holes among users. Spectrum allocation 
model comprises of the reward matrix Ri (the 
reward that each user will get) assignment matrix 
(Ai,j) and reward matrix (Bi,j). 

Jain’s fairness index (Eq. 1) is utilized to evaluate 
the fairness F of CR users, which determine how 
fairly the resources are allocated.  

 

𝐹 =
(∑ ∑ 𝑎𝑖,𝑗𝑏𝑖,𝑗)2𝑀

𝑗=1
𝑁
𝑖=1

𝑁 ∑ (∑ 𝑎𝑖,𝑗𝑏𝑖,𝑗)2𝑀
𝑗=1

𝑁
𝑖=1

,   𝑀 = 𝑁 ≠ 0                    (1) 

 
Where N is a number of cognitive (secondary) 

users, M is the total number of spectrums holes, ai,j 
indicates that the jth channel is given to the ith user 
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and bi,j is the benefit of the jth channel assigned to 
the ith user. 

The mathematical model is built on certain 
constraints, which are interference matrix C, 
spectrum availability matrix S and history matrix H. 

Where 𝑆 = {𝑠𝑖,𝑗|𝑠𝑖,𝑗 ∈  {0, 1}}
𝑁×𝑀

and 𝑠𝑖,𝑗 = 1 indicate 

that the spectrum j is available to the user i, 𝐶 =

{𝑐𝑖,𝑘,𝑗|𝑐𝑖,𝑘,𝑗 ∈  {0, 1}}
𝑁×𝑀

and 𝑐𝑖,𝑘,𝑗 = 1 means the 

interference will occur between i and k users if they 
simultaneously use the jth channel. 𝐻 =

{ℎ𝑇,𝑖|ℎ𝑇,𝑖 ∈  {0, 1}}
𝑁×𝑀

  where ℎ𝑇,𝑖 indicates that how 

many users get the spectrum and how many are left, 
in Tth allocation. The fairness among users is 
measured according to the statistics of the spectrum 
locations for every single user (Liu et al., 2008). Eq. 2 
shows the sum fairness of each user in T allocations. 

 
𝐹𝑖 = ∑ 𝑎𝑖,𝑗

𝑀
𝑗=1                         (2) 

 

where T is the number of allocations. Spectrum 

assignment matrix is 𝐴 = {𝑎 𝑖,𝑗|𝑎 𝑖,𝑗 ∈  {0, 1}}
𝑁×𝑀

 

where 𝑎 𝑖,𝑗 =1 shows that the jth spectrum is 

assigned to ith user. Spectrum assignment matrix is 
assumed to be constant during spectrum 
assignment. 

Fair spectrum resource allocation will guarantee 
the optimum performance of CSGN system. Each SU’s 
reward which it obtains for a jth channel is (Eq. 3): 

 
𝑅𝑖 = ∑ 𝑎𝑖,𝑗𝑏𝑖,𝑗

𝑀
𝑗=1                        (3) 

 
where Ri is per user reward and M is the number of 
channels, and the location of these channels varies 
with each assignment as the environment is 
dynamic. The max sum reward (MSR) of the CRSGN 
system is calculated by Eqs. 4a and 4b. 
 
𝑈 = ∑ 𝑅𝑖  

𝑁
𝑖=1                    (4a) 

𝑈𝑜 = 𝑚𝑎𝑥 ∑ ∑ 𝑎𝑖,𝑗𝑏𝑖,𝑗  
𝑀
𝑗=1

 

𝑁
𝑖=1                     (4b) 

 

where Uo is the objective function for the heuristic 
algorithms applied to our problem to optimize MSR 
of the system by maintaining fairness. 

3. Algorithms and flowcharts 

This section gives an overview of the heuristic 
algorithms: genetic algorithm (GA), particle swarm 
optimization (PSO) and cat swarm optimization 
(CSO) applied to the problem under consideration. 
Each algorithm heuristically searches for the 
optimum solution according to a defined method.  

3.1. Genetic algorithm (GA) 

Genetic algorithms are natural evolution based 
optimization algorithms which were introduced by 
Holland (1975). There are two core processes in GA. 
The 1st one is a selection of individuals to generate 
the generation and the 2nd one is the mutation and 

cross-over for the selection of the final population. 
An optimum solution for a particular problem is 
explored by GA in a finite search space (Khan and 
Ghauri, 2016).  

The GA is proposed in this paper to solve the 
spectrum assignment problem. The flowchart is 
shown in Fig. 4 and the algorithm is given below: 

 
Step 1: Initialization: In this phase, the initial 

parameters are initialized for the algorithm and the 
respective problem.  

Step 2: Roulette Wheel Selection: The 
probabilities of parents (initial +population) are 
used to generate the offspring in this method. Those 
with comparatively higher fitness values will get 
more chances to produce offspring. This is actually 
the survival of the fittest. Probabilities will be 
measured according to the following equation (Eq. 
5), according to the fitness values. 

 

𝑃𝑖 =  ∑
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛

𝑠𝑢𝑚(𝑓𝑖𝑡𝑛𝑒𝑠𝑠)
 𝑁

𝑖=1                      (5) 

 

 
Fig. 4: Flow chart of GA 

 

Pi and fitness are the probability and fairness of 
each user respectively. 

Step 3: Cross over: Parents and offspring 
produce next generation by crossover. Genes are 
randomly shared by parents and offspring to 
produce a new generation in cross over.  

Step 4: Mutation: Mutation is used in GA when 
the solution is not converging. It improves the 
selection process by randomly changing some of the 

START 

Initialize Parameters 

Create New Generation using 
Crossover 

Produce offspring 

Mutation 

END 

Terminate? 
No 

Yes 
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genes of a population. Sometimes the solution starts 
diverging in the case of the high mutation rate so, the 
mutation rate should not be very high. 

Step 5: Stoppage Condition: The last step of GA 
checks if the required results are found. If so, then it 
will terminate the process. If the solution is not 
found yet, then GA keeps looking for this iteratively. 
This process keeps running until the stopping 
criteria are reached.  

3.2. Particle swarm optimization (PSO) 

PSO, a prodigious evolutionary technique, which 
was developed by Kennedy and Eberhart (1995). It’s 
basically based on fish schooling and birds flocking’s 
social interaction. The convergence rate of PSO is 
very fast; this is the reason that it gives better results 
for fast converging problems as compared to the 
other heuristic techniques. PSO iteratively updates 
velocity and position of the particles according to the 
Eqs. 8 and 9 respectively (Sohail et al., 2017). 

The faster convergence rate is the unique quality 
of PSO due to which it is broadly used in literature to 
solve the optimization problems. Fig. 5 represents 
the flowchart and the algorithm consists of following 
steps.  

Step 1: Parameter Initialization: The 
parameters of problem and algorithm are initialized 
in this step. The initial random solutions for PSO 
algorithm is initialized in the form the positions.   

Step 2: Fitness Function: In this step, the 
objective function (given in Eq. 6) is used to calculate 
the fitness of each random solution. The solutions 
acquiring the best fitness values are expected to 
have more survival chances.   

Step 3: Velocity and Position Update: Velocity 
is the vector containing the direction and speed of 
the particle, while the position is the particle’s 
movement towards the optimal solution. Eqs. 6 and 
7 are used for updating the velocities and positions 
of the swarm, respectively.  

 

V’(i, : ) = w ∗ V(i, : ) + c1 ∗ r1 ∗ (1 – r2) ∗ [Pb(i, : ) −
B(i, : )] + c2 ∗ r1 ∗ r2 ∗ [Gb − B(i, : )]                                      (6) 

 
Where V’ represents the updated velocity, V 

indicates the previous velocity. Pb and Gb are the 
local best and global best positions respectively and 
the c1 and c2 are learning factors for local best and 
global best; r1 and r2 are random numbers and w is 
the inertia weight. 

 
S(i, j) = 1/(1 + exp(−V(i, j)))                                            (7) 

 
where 
 
S indicates the updated swarm, V represents 
updated velocities of the individuals. 

Step 4: Termination Criteria: The algorithm 
terminates only if the required solution is found, else 
it will keep updating the velocities and positions to 
find the required solution. 

3.3. Cat swarm optimization (CSO) 

The CSO algorithm was proposed by Chu et al. 
(2006). The algorithm is inspired by the natural 
behavior of cats. Typically, cats spend maximum 
time in resting and analyzing their environment for 
potential prey. This behavior is termed as seeking 
mode (SM) (Bouzidi and Riffi, 2014). In the second 
mode, cats move according to their velocities and it 
is termed as tracing mode (TM).  

The mixing ratio (MR) tells that what percentage 
of cats is going in SM and TM. Flag determines that 
either the cat is in SM or in TM. The rest of the 
algorithm is described in the following steps and the 
algorithm’s flow chart is given in Fig. 6. 

Step 1: Initialization: In the first step, cats are 
initialized as the initial solutions. The rest of the 
parameters like CDC (counts of dimensions to 
change), SRD (seeking a range of the dimensions), 
SPC (self-position consideration), SMP (seeking 
memory pool), flags and MR (mixing ratio) are 
initialized in this step as well. These parameters are 
well described in (Chu et al., 2006). 

 

 
Fig. 5: Flow chart of PSO 

 

Step 2: Is the cat is in SM or TM: The flag of each 
cat is used to check either the cat will go through SM 
or TM and how many cats will move in SM and TM, 
determined by MR.  

Step 3: Seeking Mode: In SM mode j copies of the 
cat are created according to the SMP. Each copy of 
the cat is updated according to CDC and SRD, 
randomly. Calculate the fitness of each cat and select 
a cat randomly. 

 

Terminate? 

END 

START 

Initialize velocities and positions of 
swarm 

Update velocities of the swarm 

Position  update  

No 

Yes 
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Fig. 6: Flow chart of CSO 

 

Step 4: Tracing Mode: The TM mode determines 
the next best possible move for each cat. Velocity and 
position of each cat are updated according to the 
Eqs. 8 and 9. 

 
V’i, j = Vi, j + r1c1(xgb, j– xi, j)                                                  (8) 
x′i, j =  xi, j + vi, j                                                                          (9) 

 
V'i,j is the updated velocity and Vi,j is the 

previous velocity, r1 is the random number while c1 
is the constant factor for global best (Xgb). Whereas 
xgb,j is the cat with the best fitness, xi,j is the 
previous position of the cat and x'i,j is the updated 
position of the cat. The cats, after passing through 
the seeking mode process are then combined 
together with the cats of tracing mode. 

4. Algorithm for CRSGCN problem 

Algorithm for CRSGCN is as follows: 
 
Initialize M, N, test, B, and m  
for i=1:test 
Initialize S, lc and respective algorithm’s parameters 
for iter=1:iterations 
Mapp heuristic solutions to assignment matrix ‘A’ 
Remove co-channel interference 
Fairness and MSR calculations 

Apply respective algorithm (CSO, GA, PSO, DE or HGAPSO)  
Update fairness and MSR 
if criteria meet 
go to step 16 
else go to step 4 
end if 
end  % iteration loop 
repeat 
Save user’s History  
end  % test loop 
repeat 
return MSR and fairness 
 

Candidate solutions are initialized according to 
the available channel matrix S. lc is the dimension of 
each candidate solution (Eq. 10) and it is calculated 
as: 

 

𝑙𝑐 =  ∑ ∑ 𝑆𝑚,𝑛
𝑀
𝑛=1

𝑁
𝑚=1                     (10) 

 

M is the availability of channels and N are the 
smart grid users (secondary users). The above 
algorithm shows that how CRSGCN problem is 
formulated for heuristic algorithms, the algorithm 
shows the basic steps that is used for the problem to 
evaluate the optimization problem. 

5. Simulations and results 

For simulation, we assume a noise-free 
environment where smart grid users are considered 
as SUs and active licensed users (e.g. licensed analog 
TV service) using fixed power in a fixed topology 
where the location of users and spectrum hole 
remain static during spectrum assignment.  

It is supposed that 50 channels (M=50) are 
randomly distributed among SG users (N=20) in a 
service area. Spectrum manager provides the 
spectrum availability ‘S’ according to the necessity of 
each user, based on channel unused by PUs, which is 
assumed to be static during the assignment. Channel 
assignment A is decided on the basis of availability 
matrix S, interference matrix C, Reward matrix B, 
and history matrix H (described in section II). The 
rest of the parameters are given in Table 1. 

 
Table 1: Simulation parameters 

Parameters CSO PSO GA 
c1, c2 ...…. 1.2 ...…. 
r1, r2 Random Random ...…. 

w 0.7 0.7 ...…. 
CDC, SRD SMP, MR 6 %, 10%, 8, 0.3 ...…. ...…. 

Crossover ……. ...…. Single point 
Mutation ……. ...…. 0.2 % 
Iterations 20 20 20 

Population 
Size 

10 
 

10 10 

 
Table 2 compares Avg. simulation time for each 

heuristic algorithm. Comparative analysis of 
heuristic techniques for fairness and MSR (using Eq. 
1 and 4b) are given in Fig. 7 (for fairness) and Table 
3 (for MSR). 

Fairness among smart grid users in CRSGCN is 
plotted as channel allocated per SU for no. of 
allocations in Fig. 7. It is can be observed that min. 
allocation for GA is 7 where both PSO and CSO have 

Yes No 

START 

Create N Cats 

Initialize Parameters (Velocity, Position and 
Flag) 

Evaluate the fitness of each cat and keep the best 
cat 

into seeking  kcatApply 
mode process 

 

into tracing  kcatApply 
mode process 

Re-pick cats and set them in tracing mode according to MR, and 
set them other in seeking mode  

 

END 

Terminate? 

is in seeking k Cat
mode? 

Yes 

No 
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the same min. allocation 8. However, CSO is much 
better for Avg. allocation per SU. 

 
Table 2: Simulation time (i3-4th generation: CPU 1.7 (2) 

GHz with 4 GB RAM) using MATLAB R2016a 
Heuristic Algorithm Simulation time (in sec) 

GA 7.19 
PSO 7.37 
DE 76.57 

CSO 5.18 
Hybrid GA-PSO 6.97 

 

The results (for MSR) in Table 3 are compared for 
the four different allocations (5, 10, 15 and20) using 
each heuristic algorithm. It is observed that 
percentage MSR decreases with increasing no of 
allocations. GA has min MSR of 80% and Avg. MSR of 
94% for 20 allocations. PSO and CSO produce almost 
similar results for min MSR but for Avg. MSR CSO has 
an edge over PSO by a small margin of 1%. 

The CSO is suggested for the practical 
implementation for this type of problem as it gives 
the best results as compared to the other heuristic 
algorithms. The CSO achieves the overall better 

performance of the SGCN system as well as it also 
gives good results for individual users. 

6. Conclusion 

Application of CR technology in SGCN is 
imperative in SGCN as a major chunk of data due to 
SG applications is less time critical. CR based 
communication standards have been widely 
proposed in the literature. In this research article, 
we model a typical scenario of SGCN to solve the 
problem of dynamic spectrum allocation to 
maximize fairness and MSR among SG users using a 
heuristic approach, under certain constraints such as 
channel availability, channel reward, allocation 
history, and interference among SG users. 
Comparative analysis of CSO with commonly used 
GA and PSO techniques is done for fairness and 
percentage MSR value for different channel 
allocations. Results have shown (Fig. 7 and Table 3) 
that CSO outperforms GA in both performance 
metrics by a large margin. Also, CSO has a slight edge 
over PSO in Avg. MSR and fairness. 

 

 
Fig. 7: Fairness of the users in CR based SGCN 

 
Table 3: Simulation results of heuristic algorithms for MSR 

SR # No. of Allocations CSO (Percentage) PSO (Percentage) GA (Percentage) 
  Min Avg. Min Avg. Min Avg. 

1 5 90 96 90 95 85 94 
2 10 90 96 85 92 80 93 
3 15 85 95 85 93 80 92 
4 20 85 95 85 94 80 92 

 

We have assumed fixed topology in a static 
environment for our model. Effect of mobility of PUs 
and SUs can be further explored. We have 
considered interweave mode for our problem, 
implications of underlay mode can further be 
studied. New heuristic techniques like Firefly, bat 
optimization, Grey Wolf optimization etc. can also be 
explored to further improve the results. 
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